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* Abstract

We propose a machine architecture for a high-performance processing node for a message-
passing, M1MD concurrent computer. The principal mechanisms for attaining this goal are
the direct execution and buffering of messages and a memory-based architecture that
permidts very fast context switches. Our architecture also includes a novel memory
organization that permits both indexed and associative accesses and that incorporates an
i.nstruction bufrand message queue. Simulation result suggest thtthis arhtetr
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Architecture of a Message-Driven Processor I .

William J. Daily, Linda Chao, Andrew Chien, Soha Hassoun, Waldemar Horwat,

Jon Kaplan, Paul Song, Brian Totty, and Scott Wills

Artifcial Intelligence Laboratory -4 Laboratory for Computer Science
Massachusetts Institute of Technology

Abstract Cambridge, Massachusetts 02139

We p ropos a machine architecture for a high-performsance processing
node for a meorag..paiing, MIMD concurrent computer. The principal
mechanms for attaining this goal are the direct execution and buffer-
ing of maages and a memory-based architecture that permits very fast -.
coatent switches. Our architecture also includes a novel memory orga- To MU U
asation that permits both indexed and associative accesses and that
incorporate. an instruction buffer and message queue. Simulation re- Network

suits suggest that this architecture reduces message reception overhead
by moe than an order of magnitude.

1 Introduction

1.1 Summary

The mesmsage-driven proceseor (MDP) is a processing node for a %
message-passing concurrent computer. It is designed to support Figure 1: Mesage Driven Processor Organization %
fine-grain concurrent programs by reducing the overhead and Ia- __

tency associated with receiving a message, by reducing the time instructions that require up to three operands to execute in a
neceesary to perform a context switch, and by providing hardware inle cycle. The etire p o te e oea d o estesingle cycle. The entire state of a context may be saved or restored
support for object-oriented concurrent programming systems. in less than 10 clock cycles. Two register sets are provided, one

Message handling overhead is reduced by directly executing me&- for each of two priority levels, to allow low priority messages to

sages rather than interpreting them with sequences of instruc- be preempted without saving state.
tiona. As shown in Figure 1, the MDP contains two control units, The MDP memory can be accessed either by address or by con-
the instruction unit (IU) that executes instructions and the met- tent, as a set-eelociative cache. Cache access is used to provide
sge unit (MU) that executes messages. When a message arrives address translation from object identifier to object location. This
it is examined by the MU which decides whether to queue the res- traslation mechanim is used to support a global address space.
sage or to execute the message by preempting the IU. Messages Object identifiers in the MDP are global. They are translated at
ar .nqueued without interrupting the IU. Message execution is run time to find the node on which the object resides and the
accomplished by immediately vectoring the IU to the appropriate address within this node at which the object starts.
memory address. Special registers are dedicated to the MU so no
time is wasted saving or restoring state when switching between The associative access of the MDP memory is also used to look
messag and instruction execution. up the method to be executed in response to a meange. The

cache acts as an ITLB [31 and translates a selector (from the
Context switch time is reduced by making the MDP a memory message), and class (from the receiver) into the starting address
rather than register based processor. Each MDP instruction may of the method. Because the MDP maintains a global name space,
read or write one word of memory. B.cause the MDP memory it is not necessary to keep a copy of the program code (and the
is on-chip, these memory references do not slow down instruction operating system code) at each node. Each MDP keeps a method
execution. Four general purpose registers are provided to allcw cache in its memory and fetches methods from a single distributed

copy of the program on cache misses.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage. the ACM copyrig4? notice and ihe title of the publ'tion and 'The research described in this paper was sponsored by the Do-
its date appear. and notice i% given that copying i by perm,%sion of the fen"e Advanced Research Projects Agency in part under contract anm-
Association for Computing Machinery To copy othe ise. or to bar N00014-B0.C-0622 and in part under contract number N00014-MS-
republish mquirts a fee andor specihc permission K0124.
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The MDP is a tagged machine Tags are used both to support Some of the ideas used in the MDP have been borrowed from other
dynamic-lly-typed programming languages and to support con- processors. Multiple register sets have been used in microproces-

S" current programming constructs such as futures 181. sors such as the Zilog Z.80 (11, and in microcoded processors
"' hsuch as the XEROX Alto [151. The Alto uses its multiple register

The MDP is intended to support a fine-grain, object-oriented con sets to perform micro-tasking. By switching between the register
current programming system in which a collection of objects in- sets, context switches can be made on microinstruction boundaries
teract by passing messages Ill. In such a system, addresses are with no state saving required. Spector [141 used micro-tasking on
object names (identifiers). Execution is invoked by sending a mes- the Alto to implement remote operations over an Ethernet, an
sage specifying a method to be performed, and possibly some ar- idea similar to direct method execution.
guments to an object. When an object receives a message it looks
up and executes the corresponding method. Method execution
may involve modifying the object's state, sending mesages, and 1.3 Outline
creating new objects. Because the messages are short (typically
6 words), and the methods are short (typically 20 instructions) it The remainder of this paper describes the MDP in detail. The
is critical that the overhead involved in receiving a message and user architecture of the MDP is presented in Section 2. The ms-
in swiL ing tasks to execute the methd be kept to a irini.,urn chine state, message set, and instruction set are aiscussed. Tue

MDP micro architecture is the topic of Section 3. This section in-

1.2 Background cludes a description of our novel memory architecture. Section 4

discusses support for concurrent execution models. We show how

Several message-passing concurrent computers have been built us- a programming system that combines reactive objects, dynamic

ing conventional microprocessors for processing elements. Exam- typing, fetch-Mnd-op combining, and futures can be efficiently im-

ples of this class of machines include the Cosmic Cube (131, the In- plemented on the MDP. Performance estimates for the MDP are

tel iPSC [7), and the S-NET [21. The software overhead of message discussed in Section 5.

interpretation on these machines is about 300ps. The message is
copied into memory by a DMA controller or communication pro-
cessor. The node's microprocessor then takes an interrupt, saves 2 User Architecture
its current state, fetches the message from memory, and interprets
the mesage by executing a sequence of instructions. Finally, the 2.1 Machine State
message is either buffered or the method specified by the message
is executed. The programmer sees the MDP " a 4K-word by 38-bit/word

This large overhead restricts programmers to using coarse-grained array of read-write memory (RWM), a small read-only memory

concurrency. The code executed in response to each message must (ROM), and a collection of regsters.

* run for at least a millisecond to achieve reasonable (75%) effi- The MDP registers are shown in Figure 2. The registers are di.
. ciency. Much of the potential concurrency in an application can- vided into instruction registers and message rmgisters. There are

not be exploited at this coa'se grain size. For many applications two sets of instruction registers, one for each of two priority levels.
the natural grain-size is about 20 instruction times 141 (5ip on a Each set consists of four general registers 110-R3. four address reg-
high-performance microprocessor). Two-hundred times as many isters AO-A3. and an instruction pointer IP. The general registers
processing elements could be applied to a problem if we could are 36 bits long (32 data bits + 4 tag bits) and are used to hold
efficiently run programs with a granularity of 5s rather than 1 operands and results of arithmetic operations.
ms.
Fr mThe 26-bit address registers are divided into 14-bit base an4 limit
For umy of the early message-pasing machines, the network fields that point to the base and limit addresses of an object in
latency was several milliseconds, making the software overhead a the node's local memory. Assciated with each address register
mincs concern. However, recent developments in communication is an invalid bit, and a queue bit. The invalid bit is eat when
networks for these machines (51 161 have reduced network latency the register does not contain a valid address. The queue bit is
to a few microseconds making software overhead a major concern, set when the register is used to reference the current message

The MDP is not the first processing element designed explicitly for queue. Address registers are not saved on a context switch since

a message-pssing concurrent computer. The N-CUBE family of the object they point to may be relocated. Instead, the object's

parallel processors is built around a single chip processing element identifier (OID) is re-translated into the object's bae and limit

that is used in conjunction with external memory [II]. The Mo- addreses when the context is restored. All address registers as

saic processor integrates the processor, memory, and communica- well as the queue and translation buffer registers, appear to the

tion unit all on e chip [10. Neither of these processors addresses programmer to have two adjacent 14-bit fields.

the issue of menage reception overhead. The N-CUBE processor The instruction pointer is a 16-bit register that is used to fetch
uses DMA and interrupts to handle its messages, while the Mosaic instructions. The low order 14-bits select a word of memory, bit
receives mesages one word at a time using programmed transfers 14 selects one of the two instructions packed in the word, and bit
out of receive registers. Closer in spirit to the MDP is the The 15 determines whether the IP is an absolute address, or an offset
InMOS T ranputer 19]. The Transputer supports a static, syn- into AO. Because instructions are prefetched, the value of the IP
chronous model of programming based on CSP 112) in much the may be ahead of the next instruction.
same way that the MDP supports a dynamic asynchronous model

based on actors
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RI Ri
R2 R2 generate the corresponding address bit, ADDR,. The high order
R3 R3 -ten bits of the resulting address are used to select the memory row

in which the key might be found. The operation of the memory
;7 0 27 0 as a set-associative cache is described in Section 3.2.

SQ L TTThe status register contains a set of bits that reflect the current
execution state of the MDP including current priority level, a

Shared fault status bit, and an interrupt enable bit.
27 0
STB TM

2.2 Message 
Set

The MDP controller is driven by the incoming message stream.
Figure 2: MDP Registers The arrival of a message causes some action to be performed by

the MDP. This action may be to read or write a memory loca-
tion, execute a sequence of instructions, and/or send additional

The small register set allows a context switch to be performed messages. The MDP controller reacts to the arrival of a mesage
very quickly. Only five registers must be saved and nine registers by scheduling the execution of a code sequence.
restored. Because the on-chip memory can be accessed in a single
clock cycle, the fact that few intermediate results can be kept in Rather than providing a large message set hard-wired into the
registers does not significantly degrade performance. MDP, we chose to implement only a single primitive message,

EXECUTE. This message takes as arguments a priority level <priority>
The message registers consist of two sets of queue registers, a (0 or 1), an opcode <opcod0>, and an optional list of arguments,translation buffer base/mask register, and a status register. A set <arg>. The message opcode is a physical address to the routine
of queue registers is provided for each of the two receive queues that implements the message. More complex messages, such as
Each queue register set contains a 28-bit base/limit register, and those that invoke a method or dereference an identifier, can be
a 28-bit head/tail register. The queue base/limit register contains implemented a almost as effciently using the EXECUTE mesge
14-bit pointers to the first and last words allocated to the queue as they could if they were hard-wired.

while the head/taig register contains 14-bit pointers to the first

and last words that hold valid data. As with the address registers EXCUTE <priority> <opcods> <arg> .. <arg)
all these 14-bit fields contain physical addresses into local memory.
Special addres hardware is provided to enqueue or dequeue a
word in a single clock cycle. When a message arrives at a message-driven processor, it is buffered

until the node is either idle or executing code at lower priority
We have omitted a send queue from the MDP for two reasons. level. If the node is already executing at a lower priority, no
First, analysis of the networks we plan to use [6] indicate that buffering is required. This buffering takes place without inter-
the network will be able to accept messages as fast as the nodes rupting the processor, by stealing memory cycles. The processor
can generate them. Second, if network congestion does occur, the then examines the header of the message and dispatches control
absence f a send queue allows the congestion to act as a gov- to an instruction sequence beginning at the <opcode> field of the
ernor on objects producing messages. With a send queue, these message in physical memory. Saving state is not required as the
objects would fill their respective queues before they blocked. Be- new message is executed in the high priority registers. Message
cause both the MDP and the network support multiple priority arguments are read under program control. The processor's con-
levels, higher priority objects will be able to execute and clear the trol unit rather than software, decides (1) whether to buffer or
congestion. execute the message and (2) what address to branch to when the

message is accepted.
The translation buffer base/mask register is used to generate ad-
dreses when using the MDP memory as a set-sociative cache. In the MDP, all messages do result in the execution of instructions.
This register contains a 14-bit base and a 14-bit mask. As shown The key difference is that no instructions are required to receive
in Figure 3, each bit of the the mask, MASK,, selects between a or buffer the message, and very few instructions are required to
bit of the association key, KEY,, and a bit of the base, BASE,, to
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locate.the code to be executed in response to the message The
MDP provides efficient mechanisms to buffer messages in memory,
to synchronize program execution with message arrival, and to 16 11 10 9 9 7 6 0

.',." transfer control rapidly in response to a message By performing
- these functions in hardware (not microcode), their overhead is OPCODE IREG IREG I OPERAD

reduced to a few clock cycles (<SOOns).

We choose not to implement complex messages in microcode be-
cause they will run just as fast using macrocade and implementing Figure 4: Instruction Format
them in macrocode gives us more flexibility. Since the MDP is
an experimental machine we place a hiph value on providing the
flexibility to experiment with different concurrent programming tor field. The operand descriptor can be used to specify: (I) a
models and different message sets, and to instrument the system. memory location using a offset (short integer or register) from
The MDP uses a small ROM to hold the code required to execute an address register, (2) a short integer or bit-field constant, (3)
the message types listed below. The ROM code uses the macro access to the message port, or (4) access to any of the processor
instruction set and lies in the same address space as the RWM, so registers.
it is very easy for the user to redefine these messages simply by In addition to the usual data movement, arithmetic, logical, and
specifyinSg a diffeient start address in the header of the message. control instructions, the MDP provides instructions to:

RAD <be* (Iiai) <reply-node) 4rsply-sel),
WRITE <boo*> <limit> (dats> ... <data> e Read, write, and check tag fields.
3ZA-FIED cobj-id) <index'> <rply-id' (reply-sel>
URIT-FIRLD gobj-1d) 4index, <data' o Look up the data associated with a key using the TBN reg-
UE1RUCE .Cl 'old) (reply-id> 'reply-aelb ister and set-associative features of the memory.
3 (size) data. (dsta) <reply-id> (reply-sel>
CALL (aethod-id' (arg| ... cars> a Enter a key/data pair in the association table.
SEND <receiver-id) (selector'> <arg> ... <arg"'
IEPLY (context-id> (index' (data> * Transmit a message word.i.FORWARD (control) (data) (. data'
FO D <cobJ-tdl <ata)- ... at> ay-d pl- Suspend execution of a method.
COMBINE <obj-id)- (arg> .. <erg> (reply-id' (reply-sal>
cc tobj-1td) <aark)-

All instructions are type checked, Attempting an operation on
The READ, WRITE, READ-FIELD, WRITE-FIELD, DEREFERENCE, and the wrong class of data results in a trap. Trap are also provided
XEW messages are used to read or write memory locations. READ for arithmetic overflow, for translation buffer miss, for illegal in-
WRITE read and write blocks of physical memory. They deal only struction, for message queue overflow, etc....

40 with physical memory addresses, <base> -llult>, and physical
, node addresses, <reply-node>. The READ-FIELD and WRITE-FIELD
• read and write a field of a named object. These messages use logi- 3 Micro Architecture

cal addresses (object identifiers), <obj-id>, <reply-id>, and will
work even if their target is relocated to another memory address, Figure 5 shows a block diagram of the MDP. Messages arrive
or another node. The DEREFERJNCE method reads the entire con- at the network interface. The message unit (MU) controls the
tents of an object. NEW creates a new object with the specified reception of these messages, and depending on the status of the
contents (optional) and returns an identifier. The <reply-sel> instruction unit (IU), either signals the IU to begin execution,
(reply-selector) field of the read messages specifies the selector to or buffers the message in memory The IU executes methods by
be used in the reply message. controlling the registers and arithmetic units in the data path,

The CALL and SEND messages cause a method to be executed. The and by performing read, write, and translate operations on the

method is specified directly in the CALL message, <method-id>. memory. While the MU and IU are conceptually separate units,
In the SEND message, the method is deterrraned at run-time de-
pending on the class of the receiver.

The RDLT, FORWARD, COSUINE, and CC messages are used to im-
plement Mu*eres, message multicast, fetch-and-op combining, and
garbage collection respectively.

2.21 Instruction SetNewr1,8 ][ntruc~onSetData Path Memory

Each MDP instruction is 17-bits in length. Two instructions are
-- packed into each MDP word (the INST tag is abbreviated). Each
' instruction may specify at most one memory access. Registers or
S,constants supply all other operands.

Figure 5: MDP Block Diagram
As shown in Figure 4, each instruction contains a 6-bit opcode __

field, two 2-bit register select fields, and an 7-bit operand descrip-V
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in the current implementation they are combined into a single ing using additional address comparators to provide spare mem-
controller. ory rows that can be configured at power-up to replace defective

rows

3.1 Data Path

As shown in Figure 6, the data path is divided into two sections. Queue Row Buffer

The arithmetic section (left) consists of two copies of the general
registers, and an arithmetic unit (ALU) The ALU unit accepts Colu'n Row Buffer

one argument from the register file, one argument from the data C R B

bus, and returns its result to the register file

The address section (right) consists of the address, queue, IP,

0

Colum Mmor &Arra toy

C

. Figure 7: MDPMemory Arrk ay r

4x36 92
RO-37 AO.3

d 
Two Set s 

Q 

Addr 

de 

L

------ Ll' AM5* i4o

2 Column Mius & Comparators
KYEY P Data

aFigure 6: MDP Data Path3CG

Figure 7: MDP Memory Block Diagram

register in the address section holds two u4-bit fields that are The MDP memory is used both for normal read/write operations,

bit-interleaved so that corresponding bits of the two fields can and as a set-asociative cache to translate object identifiers into

be *wily compared. The AAU generates memory addresses, and physical addresses and to perform method lookup. These trans-
may modify the contents of a queue register. In a single cycle it lation operations are performed as shown in Figure 8. The TBM
can (1) perform a queue insert or delete (with wraparound), (2) register selects the range of memory rows that contain the trans-
insert portions of a key into a base field to perform a translate lation table The key being translated selects a particular row
operation, (3) compute an address as an offset from an address within this range. Comparators built into the column multiplexor
register's base field and check the address against the limit field, compare the key with each odd word in the row, If a comparator
or (4) fetch an instruction word and increment the corresponding indicates a match, it enables the adjacent even word onto the data
IP. bus. If no comparator matches the data a miss is signaled, and

the processor takes a trap. For clarity, Figure 8 shows the words
brought out separately. In fact, to simplify multiplexor layout,

3.2 Memory Design the words in a row are bit-interleaved

A block diagram of the MDP memory is shown in Figure 7 The
memory system consists of a memory array, a row decoder, a
column multiplexor and comparators, and two row buffers (one ,,
for instruction fetch and one for queue access) Word sizes in F -- [
this figure are for our prototype which will have only IK words of'sd. = I

RWM. I_

In the prototype, the memory array will be a 256-row by 144- :• /. _ M.,oe An,,

column array of 3 transistor DRAM cells. In an industrial version
of the chip, a 4K word memory using I transistor cells would be
feasible. We wanted to provide simultaneous memory access for
data operations, instruction fetches, and queue inserts; however,
to achieve high memory density we could not alter the basic mem- ,
ory cell. Making a dual port memory would double the area of the Ky
basic cell. Instead, we have provided two row buffers that cache 0.. 0.1
one memory row (4 words) each. One buffer is used to hold the
row from which instructions are being fetched. The other holds
the row in which message words are being enqueued. Address Figure 8: Associative Memory Access
comparators are provided for each row buffer to prevent normal
accesses to these rows from receiving stale data We are consider-

19i



8.3 Area Etirnate of A3 on message arrival. Subsequent accesses through A3 read
words from the menage queue If the method faults, the message

, Our data paths use a pitch of 6OA (A is half the minimum de- is copied from the queue to the heap. Register A3 is set to point to

" sign rule) per bit giving a height of 2160A. We expect the data the message in the heap when the code is resumed The argument
"' path to be aw 0OA wide for an area of Ar 6.SMA,. A IK word object identifiers are translated to physical memory base/limit

memory array built from 3T DRAM cells will have dimensions of pairs using the translate instruction. If the method needs space
to 2450A x 6150A f 15MA2. We expect the memory peripheral to store local state, it may create a context object. When the
circuitry to add an additional 5MA2 . We plan to use an on chip method has finished execution, or when it needs to wait for a
communication unit similar to the Torus Routing Chip i5] which reply, it executes a SUSPEND instruction passing control to the
will take an additional 4MA. Allowing SMA2 for wiring gives a next message.
total chip area of Ps 4OMA3 (or a chip about 6.5mm on a side in A SEND message looks up its method based on a selector in the
2oa CMOS) for our 1K word prototype. meage, and the class of the receiver. This method lookup is

shown in Figure 10. The receiver identifier is translated into a

4 Execution Model bae/limit pair. Using this address, the clas of the receiver is
fetched. The class is concatenated with the selector field of the
message to form a key that is used to look up the physical address

4.1 CALL and SEND of the method in the translation table. Once the method is found,
processing proceeds as with the CALL message.

In a concurrent, object-oriented programming system, programs
operate by sending messages to objects Each method results in
the execution of a method. The MDP supports this model of
programming with the CALL and SEND messages 1 S.N I__c,I _ .I

The execution sequence for a CALL message is shown in Figure 9
The first word of the message contains the priority level (0), and

Meiior

bast/hma~i

ARC
f ObCt I CLASS

x~a.XLATF

Me 14hod Add

Figure 10 Method Lookup

Figure 9: Processing a CALL Message 4.2 Non-Local References and Futures

If either operand of an instruction is not of the proper type, a trap
the physical address of the CALL subroutine. If the processor is will occur. This hardware support for run-time type checking not
idle, in the clock cycle following receipt of this word, the first in- only allows us to support dynamically-typed languages such as
struction of the call routine is fetched. The call routine then reads LISP and Smalltalk, but also allows us to handle local and non-
the obect identifer for the method. This identifier is translated local data uniformly. For example, suppose we attempt to access
into a physial address in a single clock cycle using the transla- an instance variable of an object using the instruction teap <-
tion table in memory. If the translation misses, or if the method anObject at: afield. If anObj act is resident on the local node
is not resident in memory, a trap routine performs the translation a simple memory reference is generated; however, if anObject is
or fetches the method from a global data structure. resident on a different node a message send results. This uniform

Once tha method code is found, the CALL routine jumps to this handling of objects regardless of their location relieves the pro-
code. The method code may then read in arguments from the grammer and the compiler from keeping track of object locations.

This is accomplished by setting the queue-bit More importantly, it facilitates dynamically moving objects from
age queue. Ti anode to node.
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htures re supported through the use of tap. Consider the in- forwarded, buffers for combined mesages awaiting & reply, and
struction mentioned in the previous paragraph: teamp <- an~bj oct identifiers for the methods to be executed in response to combine
at: aField. If anobj oct is not local, a mesage will be sent with or reply mesages. The combining performed is controlled entirely

the Reply-To: slot of the mssage specifying the variable teamp by theme user specified methods The combine mesage is quite

in the current context, and temp will be tagged as a context similar to a CALL differing only in that the method to be executed

future. When the reply menage arrives, ma shown in Figure 11, is implicit.

it looks up the context object, and overwrites the specified slot
with the proper value. In the meantime, execution continues until
the program attempts to use the value in teamp perhaps by execut- 5 Performance
ing aVar <- temp * 1 If when this instruction examines temp
it is still tagged Future, the current context is suspended until We have constructed both instruction-level and a register-transfer
the value of temp is available. If the at: message had already (RT) level simulators for the MDP. Using these simulat s we have
replied with the value of temp, however, the tag of temp would evaluated the time required by the MDP to perform a number of
have s gasid a value and the context would not be suspended. simple operations. These operations are tabulated in Table 1.

Future can he handled in a more general sense by creating an
object of clas future to which the pending computation is to re- In this table, W specifies the number of words transferred, and

ply. Refnereces to this future object may then be passed outside N specifies the number of destinations for the FORWARD masage.The timos for CALL, SEND, and C0)flIUR are the time from messge
of the local context. When the result of the pending computation retio utL he rt d o th arrte me fetched.
i available, the future object becones this value. reception until the first word of the appropriate method is fetched.

Times a e expressed in clock cycles. We expect the clock period

of our prototype to be lOOn.

I REPLY Coateixt ID SLOT VALUE READ 5 + W

WRITE 4+ W
READ-FIELD 7
WRITE-FIELD 6
DEREFERENCE 6 - W

Context Object CL
SEND 8

REPLY 7
FORWARD 5 + N x W
COMBINE 5

Table 1: MDP Mesage Execution Times (in clock cycles)

In the near future we plan to run benchmarks on a simulated
collection of MDPs to measure the hit ratios in translation buffer

Figure 11: Processing A Reply Message and method cache (as a function of cache size), and effectiveness

of the row buffers.

4.3 Multlcast and Combining

6 Conclusion
In concurrent computations it is often necessary to fan data out
to many destinations, and to accumulate data from many sources
with an asmociative operator. In the MDP, these functions are The message-driven processor (MDP) is able to process a et of

d!. performed by the FORWARD and COMINE mesages respectively mesages that support an object-oriented concurrent program-
ming system with an overhead of less than ten clock cycles per

The FORWARD mesage contains the identifier of a control object, mamage. This performance, more than an order of magnitude
and a mesage to be forwarded as specified in that object. The improvement over existing message-passing systems, enables the
control object is a list of destinations to which the message should MDP to efficiently run programming systems that exploit con-
be forwarded along with the header (if any) which should precede currency at a grain size of as 10 instructions. In contrast existing
the mesage. When the message arrives, the control object is lo- machines operate efficiently only at a grain size of several hun-

- - cated and a buffer is created in memory to hold the mesage. The dred instructions. We conjecture that by exploiting concurrency
mesma is read into the buffer and at the same time transmitted at this fine grain size we will be able to achieve an order of mag-
to the wrst destination in the list. The message is then transmit- nitude more concurrency for a given application than is possible
ted to the subsequent destinations on the hot, and the buffer is on existing machines.
deallocated.
,eombie p i iThe MDP achieves much of its. performance by using a menage-
The combine message specifies the identifier of a combine object, driven control mechanism. The MU handles reception and buffer-
and a memage to he combined or forwarded. The combine object ing of arriving messages as well as directing the operation of the

a-

contais the destination to which combined mesages are to be IU. The IU simply executes instructions. It never makes a deci-
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